什么是四色定理、十色定理?
的有关信息介绍如下:塞瓦定理、四色定理、十色定理如下:
定义:
塞瓦定理是指在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则(BD/DC)×(CE/EA)×(AF/FB)=1。
四色定理:又称四色猜想、四色问题,是世界三大数学猜想之一。它的内容是:一张地图只需四种颜色来标记就行。

十色定理又叫Heawood定理。人类在企图证明四色定理过程中,发现了在曲面上作图构造10个区域两两相连的平面,反而更加容易。
四色定理问题的提出:
1852年,毕业于伦敦大学的格斯里来到一家科研单位搞地图着色工作时,发现每幅地图都可以只用四种颜色着色。这个现象能不能从数学上加以严格证明呢?
他和他正在读大学的弟弟决心试一试,但是稿纸已经堆了一大叠,研究工作却是没有任何进展。
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密顿爵士请教。
但直到1865年哈密顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

从此,这个问题在一些人中间传来传去,当时,三等分角和化圆为方问题已在社会上“臭名昭著”,而“四色瘟疫”又悄悄地传播开来了。
影响
数学家们为证明这条定理绞尽脑汁,所引进的概念与方法刺激了拓扑学与图论的生长、发展。
在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。
不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。



